Sains Malaysiana 52(9)(2023): 2529-2543

http://doi.org/10.17576/jsm-2023-5209-05

 

Rare Earth Element Charactization of Bledug Kuwu Mud Volcano, Central Java, Indonesia Based on Geochemical Analyzes (Susceptibility, XRF, XRD, SEM-EDS and ICP-EOS)

(Pencirian Unsur Nadir Bumi Gunung Berapi Lumpur Bledug Kuwu, Jawa Tengah, Indonesia, Berdasarkan Analisis Geokimia (Kerentanan, XRF, XRD, SEM-EDS dan ICP-EOS))

 

RINA DWI INDRIANA1,*, HIJRAH SAPUTRA2, MARIYANTO MARIYANTO3, ELEONORA AGUSTIN4, MIMIN IRYANTI5 & CAHYO AJI HAPSORO6

 

1Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Indonesia

2Postgraduate School, Universitas Airlangga, Surabaya, Indonesia

 3Department of Geophysical Engineering, Faculty of Civil, Planning and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Indonesia

4Department of Geophysics, Faculty of Mathematics and Natural Science, Padjadjaran University, Bandung, Indonesia

5Department of Physics, Faculty of Education of Mathematics and Natural Science, Universitas Pendidikan Indonesia, Bandung, Indonesia

6Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang, Indonesia

 

Received: 8 March 2023/Accepted: 22 August 2023

 

Abstract

Mud volcano material is generally rich in oxides, while oxides are the main compounds forming rare earth elements. Bledug Kuwu, Central Java, Indonesia, is one of the active mud volcanoes, so there may be rare earth elements. This research is the characterization of rare earth elements (REE) in the Bledug Kuwu mud using magnetic and geochemical methods. Magnetic characterization uses magnetic susceptibility measurements. The geochemical characterization of the mud samples consisted of the XRF (X-Ray Fluorescence), XRD (X-Ray Diffraction), ICP-EOS (inductively coupled plasma) test, and the SEM-EDS (Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy) test. The results of the geochemical analysis of the Bledug Kuwu mud sample were the content of quartz, kaolinite, and calcite with an average concentration of 42.26%, 23.67%, and 33.96%. The susceptibility of Kuwu's mud is 0 because the concentration of metal elements is low; according to the results of XRF, XRD, and SEM tests identified the main mud elements as C, O, Si, Ca, and Al. The rare earth elements in Kuwu's mud are Ce, Dy, Eu, Gd, Ho, La, Nd, Pr, Sm, Tb, Y, and Sc. The highest concentrations were Ce 52.22 ppm and La 47.95 ppm.

 

Keywords: Geochemical; mud volcano; petromagnetic; rare earth elements

 

ABSTRAK

Bahan gunung berapi lumpur umumnya kaya dengan oksida, manakala oksida adalah sebatian utama yang membentuk unsur nadir bumi. Bledug Kuwu, Jawa Tengah, Indonesia ialah salah sebuah gunung berapi lumpur aktif, jadi mungkin ada unsur nadir bumi. Kajian ini adalah pencirian unsur nadir bumi (REE) dalam lumpur Bledug Kuwu menggunakan kaedah magnetik dan geokimia. Pencirian magnet menggunakan ukuran kerentanan magnetik. Pencirian geokimia bagi sampel lumpur terdiri daripada XRF (Pendarfluor Sinar-X), XRD (Belauan Sinar-X), ujian ICP-EOS (plasma berganding induktif) dan SEM-EDS (Mikroskop Elektron Imbasan-Spektroskopi sinar-X serakan tenaga). Hasil analisis geokimia sampel lumpur Bledug Kuwu adalah kandungan kuarza, kaolinit dan kalsit dengan purata kepekatan 42.26%, 23.67% dan 33.96%. Kecenderungan lumpur Kuwu ialah 0 kerana kepekatan unsur logam adalah rendah; mengikut keputusan ujian XRF, XRD dan SEM mengenal pasti unsur lumpur utama sebagai C, O, Si, Ca dan Al. Unsur nadir bumi dalam lumpur Kuwu ialah Ce, Dy, Eu, Gd, Ho, La, Nd, Pr, Sm, Tb, Y dan Sc. Kepekatan tertinggi ialah Ce 52.22 ppm dan La 47.95 ppm.

 

Kata kunci: Geokimia; gunung berapi lumpur; petromagnet; unsur nadir bumi

 

 

REFERENCES

Agustawijaya, D. & Krisnayanti, B.D. 2013. Evaluasi kebolehjadian sistem panas bumi berdasarkan aspek geokimia dan deformasi geologi untuk Gunung Lumpur Sidoarjo-Jawa Timur. Seminar Nasional III Teknik Sipil 2013. Universitas Muhammadiyah Surakarta. G-347-G-352.

Arienzo, M., Ferrara, L., Trifuoggi, M. & Toscanesi, M. 2022. Advances in the fate of rare earth elements, REE, in transitional environments: Coasts and estuaries. Water 14(3): 401. https://doi.org/10.3390/w14030401

Aslan, A., Warne, A.G., White, W.A., Guevara, E.H., Smyth, R.C., Raney, J.A. & Gibeaut, J.C. 2001. Mud volcanoes of the Orinoco delta, eastern Venezuela. Geomorphology 41(4): 323-336.

Attia, O.E.A., Ab Khadra, A.M., Nawwar, A.H.  & Radwan, G. 2012. Impacts of human activities on the sedimentological and geochemical characteristics of Mabahiss Bay, North Hurghada, Red Sea, Egypt. Arab. J. Geosci. 5: 481-499.

Bambang, P., Handoko, T., Sunardi, E., Hadi, S. & Sawolo, N. 2012. Mud volcano and its evolution. Earth Sciences. InTech. doi:10.5772/24944

Barber, A.J., Tjokrosapoetro, S. & Charlton, T.R. 1986. Mud volcanoes, and shale diapirs, wrench faults and melanges in accretionary complex, Eastern Indonesia. Am. Assoc. Petrol. Geol. Bull. 70: 1729-1741.

Bemmelen, R.W. 1949. The Geology of Indonesia. Vol IA. Netherland: The Haque Martinus Nijhoff, Government Printing Office.

Bowles, J.E. 1984. Physical and Geotechnical Properties of Soils. McGraw Hill, Inc.

Brand, E.W. & Brenner, R.F. 1981. Soft Clay Engineering. Elsevier Scientific Publishing Company.

Brindley, G.W. & Brown, G. 1980. Crystal Structures of Clay Minerals and Their X-Ray Identification. Mineralogical Society of Great Britain and Ireland. Vol. 5. https://doi.org/10.1180/mono-5

Brown, K. 1990. The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. J. Geophys. Res. 95: 8969-8982.

Carretero, M.I. 2020. Clays in pelotherapy. A review. Part I: Mineralogy, chemistry, physical and physicochemical properties. Applied Clay Science 189: 105526.

Chen, F.H. 1975. Foundation on Expansive Soil, Development in Geotechnical Engineering Vol. 12. Amsterdam: Elsevier Scientific Publishing Company.

Davies, R.J., Mathias, S.A., Swarbrick, R.E. & Tingay, M.J. 2011. Probabilistic longevity estimate for the LUSI mud volcano, East Java. Journal of Geological Society 168: 517- 523.

Davies, R.J., Swarbrick, R.E., Evans, R.J. & Huuse, M. 2007. Birth of a mud volcano: East Java. GSA Today 17(2): 4-9.

Davisson, M.L., Presser, T.S. & Criss, R.E. 1994. Geochemistry of tectonically expelled fluids from the Northern Coast Ranges: Rumsey Hills, California. Geochima et Cosmochima Acta 58(7): 1687-1699.

Delisle, G., Von Rad, U., Andruleit, H., Von Daniels, C., Tabrez, A. & Inam, A. 2002. Active mud volcanoes on-and offshore eastern Makran, Pakistan. Int. J. Earth Sci. 91(1): 93-110.

Deville, E. & Guerlais, S-H. 2009. Cyclic activity of mud volcanoes: evidence from Trinidad (SE Caribbean) Mar. Pet. Geol. 26(9): 1681-1691.

Dia, A.N., Castrec-Rouelle, M., Boulègue, J. & Comeau, P. 1999. Trinidad mud volcanoes: where do the expelled fluids come from? Geochimica et Cosmochimica Acta 63(7-8): 1023-1038.

Dimitrov, L.I. 2002. Mud volcanoes - the most important pathway for degassing deeply buried sediments. Earth Sci. Rev. 59(1-4): 49-76.

Garrett, D.E. 2004. Handbook of Lithium and Natural Calcium Chloride: Their Deposits, Processing, Uses and Properties. Amsterdam: Academic Press.

Grim, R.E. 1968. Clay Mineralogy. 2nd ed. New York: McGraw-Hill. p. 596.

Higgins, G.E. & Saunders, J.B. 1974. Mud volcanoes- their nature and origin. Contribution to geology and palaeobiology of the Caribbean and adjacent areas. Verh. Naturfosch. Ges. 84: 101-152.

https://www.idntimes.com/travel/destination. Accessed on 27 July 2022.

Husein, S. 2015. The International Geology Course Programme. Petroleum and Regional Geology of Northeast Java Basin, Indonesia. 7-11 December 2015. 10.13140/RG.2.1.2408.3280

Ibrahim, G., Subardjo & Sendjaja, P. 2010. Tektonik dan Mineral di Indonesia. Jakarta: Badan Meteorologi Klimatologi dan Geofisika.

Indriana, R.D., Nurwidyanto, M.I. & Haryono, K.W. 2007. Interpretasi bawah permukaan dengan metode self potential daerah Bledug Kuwu Kradenan Grobogan. Berkala Fisika 10(3): 155-167.

Kopf, A. & Deyhle, A. 2002. Back to the roots: Boron geochemistry of mud volcanoes and its implications for mobilization depth and the global B cycling. Chem. Geol. 192(3-4): 195-210.

Kopf, A., Deyhle, A., Lavrushin, V.Y., Polyak, B.G., Gieskes, J.M., Buadnidze, G.I., Wallmann, K. & Eisenhauer, A. 2003. Isotopic evidence (He, B, C) for deep fluid and mud mobilization from mud volcanoes in the Caucasus continental collision zone. Int. J. Earth Sci. 92: 407-425. doi.10.1007/S00531-003- 0326-y

Le Pichon, X., Foucher, J.P., Boulégue, J., Henry, P., Lallemant, S., Benedetti, M., Avedik, F. & Mariotti, A. 1990. Mud volcano field seaward of the Barbados accretionary complex: A submersible survey. J. Geophys. Res. 95(B6): 8931-8943.

Lina, C., Rui, M., Paula, F., Claudia, M., Eduarda, P., Vitor, M., Luis, P. & Carlos, V. 2019. Rare earth elements in mud volcano sediments from the Gulf of Cadiz, South Iberian Peninsula. Sci. of the Total Environment 652: 869-879.

Maslov, A.V., Shevchenko, V.P. & Bychkov, A.Y. 2021. The distribution of trace elements in mud volcano sediments: Searching for features of a juvenile component impact. Moscow Univ. Geol. Bull. 76: 436-444. https://doi.org/10.3103/S0145875221040086

Martin, J.B., Kastner, M., Henry, P., Le Pichon, X. & Lallsment, S. 1996. Chemical and isotopic evidence for sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge. J. Geophys. Res. 101: 20325-20345.

Mazzini, A. & Etiope, G. 2017. Mud volcanism: An updated review. Earth Sci. Rev. 168: 81-112.

McGill, I.J. 1993. Mathey rare earth elements. Ullmann ́s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 607-649.

Milkov, A.V. 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology 167: 29-42.

Mori, J. & Kano, Y. 2009. Is the 2006 Yogyakarta earthquake related to the triggering of the Sidoardjo, Indonesia mud volcano? Journal of Geography 118(3): 492-498.

Munasir, M., Triwikantoro, T., Zainuri, M. & Darminto, D. 2012. Uji XRD dan XRF pada bahan meneral (batuan dan pasir) sebagai sumber material cerdas (CaCO3 dan SiO2). Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 2(1): 20-29.

Naimi, S. & Ayoubi, S. 2013. Vertical and horizontal distribution of magnetic susceptibility and metal contents in an industrial district of Central Iran. J. Appl. Geophys. 96: 55-66.

Nurhandoko, B.E.B., Kurniadi, R., Susilowati, Triyoso, K., Sri Widowati, Asmara Hadi, M.R., Rizal Abda, M., Martha, R.K., Elfa Fatiah & Rizal Komara, I. 2019. Integrated subsurface temperature modeling beneath Mt. Lawu and Mt. Muriah in The Northeast Java Basin, Indonesia. Open Geosciences 11(1): 341-351. https://doi.org/10.1515/geo-20190027

PANalytical B.V. 2009. X-ray Fluorescence Spectrometry. http://www.panalytical.com/index.cfm?pid=130. Accessed on 30 September 2009.

Queiber, M., Burton, M., Arzilli, F., Chiarugi, A., Marliyani, G.I., Anggara, F. & Harijoko, A. 2017. CO2 flux from Javanese mud volcanism. Journal of Geophysical Research: Solid Earth 122(6): 4191-4207.

Rugayya, S. & Suryanto, W. 2019. Characterization of seismic signals at Bledug Kuwu using goodness-of-fit criteria analysis. Journal of Physics: Conference Series. 1242: 012050. 10.1088/1742-6596/1242/1/012050

Rizqiya, F. 2014. Analisis struktur fraksi fasa kristal natrium klorida dari Brine Water Bledug Kuwu sebagai fungsi waktu kristalisasi berdasarkan pola difraksi sinar X (X Ray Diffraction). Sarjana. Universitas Islam Negeri Sunan Kalijaga, Yogyakarta (Unpublished).

Rohmah, M., Lalasari, L.H., Wahyuadi, J. & Natasha, N.C. 2018. Lithium recovery from Bledug Kuwu mud volcano using water leaching method. 2018 IEEE International Conference on Innovative Research and Development (ICIRD). 11-12 May.

Sabdaningsih, A. 2018. MITOLOGI DAN SAINS: Bledug Kuwu di Kabupaten Grobogan. Sabda: Jurnal Kajian Kebudayaan 13(1): 7-17. doi.org.10.14710/sabda.13.1.7-17

Sari, I.G.A.A.S. & Warmada, I.W. 2021. IOP Conf. Ser.: Earth Environ. Sci. 851: 012042. doi.10.1088/1755-1315/851/1/012042

Satyana, A.H. & Asnidar. 2007. Mud diapirs and mud volcanoes in depression of Java to Madura: Origins nature and implications to petroleum system. Annual Convention & Exhibition Indonesia: Indonesian Petroleum Association 32: 139.

Sa'diyah, K., Syarwani, M. & Hadiantoro, S. 2017. Adsorption of nickel in nickel sulphate solution (NiSO4) by Lapindo mud. Jurnal Bahan Alam Terbarukan 6(1): 39-44.

Scimeca, M., Bischetti, S., Lamsira, H.K., Bonfiglio, R. & Bonanno, E. 2018. Energy dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. European Journal of Histochemistry: EJH 62(1): 2841. https://doi.org/10.4081/ejh.2018.2841

Siregar, S. & Siregar, N.I. 2016. Analisis dan pemanfaatan unsur belerang dan salinitas lumpur Bledug Kuwu di Desa Kuwu, Kecamatan Kradenan, Kabupaten Grobongan, Jawa Tengah. POSITRON: Berkala Ilmiah Fisika 6(1): 40-42.

Smallman, R.E. & Bishop, R.J. 2000. Modern Physical Metallurgy and Materials Engineering. New York: Hill International Book Company.

Srodon, J. 1999. Nature of mixed-layer clays and mechanisms of their formation and alteration. Annu. Rev. Earth Planet Sci. 27: 19-53.

Sudarningsih, S., Bijaksana, S., Ramdani, R., Hafidz, A., Pratama, A., Widodo, W., Iskandar, I., Dahrin, D., Fajar, S.J. & Santoso, N.A. 2017. Variation in the concentration of magnetic minerals and heavy metals in suspended sediments from Citarum River and tributaries, West Java, Indonesia. Geosciences 7: 66.

Sulistiyono, E., Lalasari, L. H., Mayangsari, W. & Prasetyo, A. 2018. Study of lithium extraction from brine water, Bledug Kuwu, Indonesia by the precipitation series of oxalic acid and carbonate sodium. AIP Conference Proceedings 1964: 020007.

Sumarno, S., Ratnawati, R. & Nugroho, A.N.A. 2012. Recovery garam lithium dari air asin (Brine) dengan metoda presipitasi. Teknik 33(2): 67-69.

Talas, E., Duman, M., Küçüksezgin, F., Brennan, M.L. & Raineault, N.A. 2015. Sedimentology and geochemistry of mud volcanoes in the Anaximander Mountain Region from the Eastern Mediterranean Sea. Marine Pollution Bulletin 95(1): 63-71. https://doi.org/10.1016/j.marpolbul.2015.04.042

Tran, K.T., Van Luong, T., An, J.W., Kang, D.J., Kim, M.J. & Tran, T. 2013. Recovery of magnesium from Uyuni Salar brine as high purity magnesium oxalate. Hydrometallurgy 138: 93-99.

Vignesh, A., Ramanujam, N., Rasool, Q. & Swapan, K.B. 2016. Geochemical evidence for provenance, tectonic settings, and presence of gas hydrate in mud volcano sediments of Andaman Islands. Oil Gas Res. 2: 111. doi:10.4172/2472- 0518.1000111

Zainudin, A., Badri, I., Padmawijaya, T., Humaida, H. & Sutaningsih, E. 2010. Fenomena Geologi Semburan Lumpur Sidoarjo. Bandung: Badan Geologi, Kementerian Energi dan Sumber Daya Mineral.

Zhang, C., Qiao, Q., Appel, E. & Huang, B. 2012. Discriminating sources of anthropogenic heavy metals in urban street dust using magnetic and chemical methods. Journal of Geochemical Exploration 119-120: 60-75.

 

*Corresponding author; email: rinadwiindriana@lecturer.undip.ac.id

 

 

 

 

 

 

 

 

 

 

 

previous